Search Everything

Find articles, journals, projects, researchers, and more

Back to Articles

Automatic Marine Debris Inspection

Authors:
Salvatore Corcione, Vincenzo Cusati, Danilo Ciliberti andFabrizio Nicolosi

Abstract

Plastic trash can be found anywhere, around the marina, beaches, and coastal areas in recent times. This study proposes a trash dataset called HAIDA and a trash detector that uses a YOLOv4-based object detection algorithm to monitor coastal trash pollution efficiently. Model selection, model evaluation, and hyperparameter tuning were applied to obtain the best model for the lowest generalization error in the real world. Comparison of the state-of-the-art object detectors based on YOLOv3, YOLOv4, and Scaled-YOLOv4 that used hyperparameter tuning, the three-way holdout method, and k-fold cross-validation have been presented. An unmanned aerial vehicle (UAV) was also employed to detect trash in coastal areas using the proposed method. The performance on image classification was satisfactory.

Keywords: : object detection; convolutional neural network; model selection; model evaluation; hyperparameter tuning; UAV
DOI: https://doi.ms/10.00420/ms/2636/GDPRF/AHY | Volume: 10 | Issue: 1 | Views: 0
Download Full Text (Free)
Article Document
1 / 1
100%

Subscription Required

Your subscription has expired. Please renew your subscription to continue downloading articles and access all premium features.

  • Unlimited article downloads
  • Access to premium content
  • Priority support
  • No ads or interruptions

Upload

To download this article, you can either subscribe for unlimited downloads, or upload 0 items (articles and/or projects) to download this specific article.

Total: 0 / 0
  • Choose any combination (e.g., 2 articles + 1 project = 3 total)
  • After uploading, you can download this specific article
  • Or subscribe for unlimited downloads of all articles