Search Everything

Find articles, journals, projects, researchers, and more

Back to Articles

Intelligent Pursuit–Evasion Game Based on Deep Reinforcement Learning for Hypersonic Vehicles

Authors:
Mengjing Gao, Tian Yan, ORCID, Quancheng Li, Wenxing Fu, and Jin Zhang

Abstract

As defense technology develops, it is essential to study the pursuit–evasion (PE) game problem in hypersonic vehicles, especially in the situation where a head-on scenario is created. Under a head-on situation, the hypersonic vehicle’s speed advantage is offset. This paper, therefore, establishes the scenario and model for the two sides of attack and defense, using the twin delayed deep deterministic (TD3) gradient strategy, which has a faster convergence speed and reduces over-estimation. In view of the flight state–action value function, the decision framework for escape control based on the actor–critic method is constructed, and the solution method for a deep reinforcement learning model based on the TD3 gradient network is presented. Simulation results show that the proposed strategy enables the hypersonic vehicle to evade successfully, even under an adverse head-on scene. Moreover, the programmed maneuver strategy of the hypersonic vehicle is improved, transforming it into an intelligent maneuver strategy.

Keywords: hypersonic vehicle; deep reinforcement learning; TD3; intelligent maneuver strategy
DOI: https://doi.ms/10.00420/ms/0861/3B4M8/CDJ | Volume: 10 | Issue: 1 | Views: 0
Download Full Text (Free)
Article Document
1 / 1
100%

Subscription Required

Your subscription has expired. Please renew your subscription to continue downloading articles and access all premium features.

  • Unlimited article downloads
  • Access to premium content
  • Priority support
  • No ads or interruptions

Upload

To download this article, you can either subscribe for unlimited downloads, or upload 0 items (articles and/or projects) to download this specific article.

Total: 0 / 0
  • Choose any combination (e.g., 2 articles + 1 project = 3 total)
  • After uploading, you can download this specific article
  • Or subscribe for unlimited downloads of all articles