Search Everything

Find articles, journals, projects, researchers, and more

Back to Articles

Measurement and Prediction of the Density and Viscosity of Biodiesel Blends

Authors:
Minh Tuan Pham, Anh Tuan Hoang, Anh Tuan Le, Abdel Rahman M.Said Al-Tawaha, Van Huong Dong, Van Vang Le

Abstract

Biodiesel has been considered as the potential fuel type with many advantages such as environmental pollution reduction, no sulfur production, and biodegradation. However, disadvantages of biodiesel such as high viscosity and high density affected diesel engines and fuel systems negatively. Thus, it is necessary to reduce the viscosity and density of biodiesel fuel in unmodified diesel engines. Until now, a large number of empirical correlations have been used to predict the viscosity and density of biodiesel–fossil diesel fuel blend This study was conducted to predict the kinematic viscosity and density of blends of biodiesel and fossil diesel fuel. Three types of biodiesel were examined: Coconut oil-based biodiesel (COB), Jatropha oil-based biodiesel (JOB), and Waste oil-based biodiesel (WOB). Twenty-four samples of the three types of biodiesel–diesel fuel blends were created by blending 5% (B5), 10% (B10), 20% (B20), 40% (B40), 50% (B50), 60% (B60), 75% (B75), and 100% (B100) of biodiesel with conventional diesel fuel to produce the corresponding blends for experimental purposes. Experimental correlations and mathematical equations for predicting the relationship between the kinematic viscosity and the density of the biodiesel–fossil diesel fuel blends, the dependence of the kinematic viscosity and the density of the biodiesel–fossil diesel fuel blends on biodiesel fractions, and the effects of temperature on the kinematic viscosity and density of pure biodiesel were developed. The results of the experimental correlation data were near the predicted mathematical equation with a confidence level of 95%.

Keywords: GCSI; Concept; POCI; Project; Tool Table of Contents Article Abstract
DOI: https://doi.ms/10.00420/ms/8161/SC39G/IBV | Volume: 9 | Issue: 5 | Views: 0
Download Full Text (Free)
Article Document
1 / 1
100%

Subscription Required

Your subscription has expired. Please renew your subscription to continue downloading articles and access all premium features.

  • Unlimited article downloads
  • Access to premium content
  • Priority support
  • No ads or interruptions

Upload

To download this article, you can either subscribe for unlimited downloads, or upload 0 items (articles and/or projects) to download this specific article.

Total: 0 / 0
  • Choose any combination (e.g., 2 articles + 1 project = 3 total)
  • After uploading, you can download this specific article
  • Or subscribe for unlimited downloads of all articles