Search Everything

Find articles, journals, projects, researchers, and more

Back to Articles

The Dynamic Response of Unsaturated Clean Sand at a Very Low Frequency

Authors:
Rini Kusumawardani, Kabul Basah Suryolelono, Bambang Suhendro, Ahmad Rifa’i

Abstract

A series of cyclic triaxial tests at very low frequency was carried out on unsaturated clean sand in order to quantitatively investigate the influence of the degree of saturation on dynamic response. The conventional triaxial testing apparatus, which is usually used on saturated soil, was employed to test the unsaturated soil with the additional pore air pressure controller. During the series of tests, four different degrees of saturation level (Sr = 55%, 70%, 85%, 98%) were applied to the soil specimen based on a single value of effective confining pressure (?’3). The results revealed that the application of cyclic loading at a very low frequency occurring continuously triggered the decrease of soil resistance. For degree saturation, Sr = 55% revealed that the resistance of soil was stronger in comparison to another level. Furthermore, the experimental results confirmed that applied cyclic loading induced a change in saturation level before and after testing. In addition, at a certain level of saturation, a phenomenon of settlements was likely to occur and the soil specimen then underwent liquefaction.

Keywords: Unsaturated clean sand Undrained cyclic triaxial testing Cyclic shear strain
DOI: https://doi.ms/10.00420/ms/1176/RJ4L7/PPK | Volume: 7 | Issue: 1 | Views: 0
Download Full Text (Free)
Article Document
1 / 1
100%

Subscription Required

Your subscription has expired. Please renew your subscription to continue downloading articles and access all premium features.

  • Unlimited article downloads
  • Access to premium content
  • Priority support
  • No ads or interruptions

Upload

To download this article, you can either subscribe for unlimited downloads, or upload 0 items (articles and/or projects) to download this specific article.

Total: 0 / 0
  • Choose any combination (e.g., 2 articles + 1 project = 3 total)
  • After uploading, you can download this specific article
  • Or subscribe for unlimited downloads of all articles