Search Everything

Find articles, journals, projects, researchers, and more

Back to Articles

Diagnosis of Diabetes Using Support Vector Machines with Radial Basis Function Kernels

Authors:
Abdul Azis Abdillah, Suwarno Suwarno

Abstract

Diabetes is one of the most serious health challenges in both developed and developing countries. Early detection and accurate diagnosis of diabetes can reduce the risk of complications. In recent years, the use of machine learning in predicting disease has gradually increased. A promising classification technique in machine learning is the use of support vector machines in combination with radial basis function kernels (SVM-RBF). In this study, we used SVM-RBF to predict diabetes. The study used a Pima Indian diabetes dataset from the University of California, Irvine (UCI) Machine Learning Repository. The subjects were female and ? 21 years of age at the time of the index examination. Our experiment design used 10-fold cross-validation. Confusion matrix and ROC were used to calculate performance evaluation. Based on the experimental results, the study demonstrated that SVM-RBF shows promise in aiding diagnosis of Pima Indian diabetes disease in the early stage.

Keywords: Road safety barriers are used to redirect traffic at roadside work-zones. When filled with water these barriers are able to withstand low to moderate impact speeds up to 50kmh-1. Despite this feature there are challenges when using portable water-filled
DOI: https://doi.ms/10.00420/ms/5159/QQT3V/YFZ | Volume: 7 | Issue: 4 | Views: 0
Download Full Text (Free)
Article Document
1 / 1
100%

Subscription Required

Your subscription has expired. Please renew your subscription to continue downloading articles and access all premium features.

  • Unlimited article downloads
  • Access to premium content
  • Priority support
  • No ads or interruptions

Upload

To download this article, you can either subscribe for unlimited downloads, or upload 0 items (articles and/or projects) to download this specific article.

Total: 0 / 0
  • Choose any combination (e.g., 2 articles + 1 project = 3 total)
  • After uploading, you can download this specific article
  • Or subscribe for unlimited downloads of all articles