Search Everything

Find articles, journals, projects, researchers, and more

Back to Articles

Predictive Modeling for an Industrial Naphtha Reforming Plant using Artificial Neural Network with Recurrent Layers

Authors:
Sepehr Sadiigh, Reza Seif Mohaddecy

Abstract

In this research, a layered-recurrent artificial neural network (ANN) using the back-propagation method was developed for simulation of a fixed-bed industrial catalytic reforming unit called Platformer. Ninety-seven data points were gathered from the industrial catalytic naphtha reforming plant during the complete life cycle of the catalytic bed (about 919 days). Ultimately, 80% of them were selected as past horizontal data sets, and the others were selected as future horizontal ones. After training, testing, and validating the model with past horizontal data, the developed network was applied to predict the volume flow rate and research octane number (RON) of the future horizontal data versus days on stream. Results show that the developed ANN was capable of predicting the volume flow rate and RON of the gasoline for the future horizontal data sets with AAD% (average absolute deviation) of 0.238% and 0.813%, respectively. Moreover, the AAD% of the predicted octane barrel levels against the actual values was 1.447%, which shows the excellent capability of the model to simulate the behavior of the target catalytic reforming plant.

Keywords: Artificial neural network Catalytic naphtha reforming Lifecycle Modeling Simulation
DOI: https://doi.ms/10.00420/ms/9567/8SD69/YRV | Volume: 4 | Issue: 2 | Views: 0
Download Full Text (Free)
Article Document
1 / 1
100%

Subscription Required

Your subscription has expired. Please renew your subscription to continue downloading articles and access all premium features.

  • Unlimited article downloads
  • Access to premium content
  • Priority support
  • No ads or interruptions

Upload

To download this article, you can either subscribe for unlimited downloads, or upload 0 items (articles and/or projects) to download this specific article.

Total: 0 / 0
  • Choose any combination (e.g., 2 articles + 1 project = 3 total)
  • After uploading, you can download this specific article
  • Or subscribe for unlimited downloads of all articles