Search Everything

Find articles, journals, projects, researchers, and more

Back to Articles

Enhancement of Aerobic Wastewater Treatment by the Application of Attached Growth Microorganisms and Microbubble Generator

Authors:
Wiratni Budhijanto, Deendarlianto, Heppy Kristiyani, Dodi Satriawan

Abstract

This paper presents the efficiency improvement in aerobic wastewater treatment technology through the application of a microbubble generator (MBG) for aeration. Aeration using an MBG is accomplished through water circulation and does not need air compressors, making it more energy efficient than conventional aerators. The MBG aerobic system with the variations on liquid flow rate (Q1) and airflow rate (Qg) combination was tested using artificial wastewater with a typical composition of organic waste. Experimental data were evaluated by means of a simplified mathematical model to systematically compare different MBG schemes. The study confirmed that the soluble chemical oxygen demand (SCOD) removal efficiency was significantly affected by the Qg values. Lower Qg values were preferable because they tended to have higher soluble chemical oxygen demand (SCOD) removal efficiency. However, the microbubbles were less stable at lower Qg due to the high incidence of bubble collisions. The study concluded that for applications in an actual aerobic waste treatment pond, the positioning of the MBG in the pond had to be carefully designed to minimize the collision tendency.


Keywords: Aerobic digestion Attached growth Biofilm Microbubble generator
DOI: https://doi.ms/10.00420/ms/7421/E5HLH/PPE | Volume: 6 | Issue: 7 | Views: 0
Download Full Text (Free)
Article Document
1 / 1
100%

Subscription Required

Your subscription has expired. Please renew your subscription to continue downloading articles and access all premium features.

  • Unlimited article downloads
  • Access to premium content
  • Priority support
  • No ads or interruptions

Upload

To download this article, you can either subscribe for unlimited downloads, or upload 0 items (articles and/or projects) to download this specific article.

Total: 0 / 0
  • Choose any combination (e.g., 2 articles + 1 project = 3 total)
  • After uploading, you can download this specific article
  • Or subscribe for unlimited downloads of all articles