Search Everything

Find articles, journals, projects, researchers, and more

Back to Articles

The Mechanical Properties of Al2O3-Reinforced Aluminum A356 with Grain Refiner Al-5Ti-1B Fabricated using the Stir Casting Method

Authors:
Donanta Dhaneswara, Raka Nuralif Verdiyanto, Anne Zulfia Syahrial

Abstract

Al2O3 reinforced aluminum A356 has been successfully fabricated using the stir casting method. The development of current technology requires a material that is light, strong, tough, and corrosion and wear resistant, in addition to various other advanced properties. A composite material was therefore developed. Composite materials can be used in a wide range of strategic sectors such as the automotive, military, aerospace, and electrical industries. This study aims to develop a composite material that consists of aluminum A356 as the matrix and micro Al2O3 as the reinforcement, with 8 wt% magnesium as the wetting agent with the addition of grain refiner TiB at 0; 0.01; 0.0347; 0.0362; 0.0622; and 0.0689 wt% using the stir casting method. The material characterization comprises tensile testing, hardness testing, wear testing, chemical composition testing (OES and XRD), and microstructure testing (OM, SEM, and EDX). The test results revealed that the addition of 0.0347 wt% TiB was capable of reducing the size and changing the shape of a long and coarse grain to become round and fine, thereby significantly increasing its tensile strength, hardness, and wear resistance, but decreasing the elongation and ductility.

Keywords: Al2O3 Aluminum A356 Composite Grain refiner TiB Stir casting
DOI: https://doi.ms/10.00420/ms/1709/BIDNP/QCU | Volume: 8 | Issue: 8 | Views: 0
Download Full Text (Free)
Article Document
1 / 1
100%

Subscription Required

Your subscription has expired. Please renew your subscription to continue downloading articles and access all premium features.

  • Unlimited article downloads
  • Access to premium content
  • Priority support
  • No ads or interruptions

Upload

To download this article, you can either subscribe for unlimited downloads, or upload 0 items (articles and/or projects) to download this specific article.

Total: 0 / 0
  • Choose any combination (e.g., 2 articles + 1 project = 3 total)
  • After uploading, you can download this specific article
  • Or subscribe for unlimited downloads of all articles