Search Everything

Find articles, journals, projects, researchers, and more

Back to Articles

Characteristics of Silica Slurry Flow in a Spiral Pipe

Authors:
Yanuar, Gunawan, Dedih Sapjah

Abstract

Silica sand slurry is a multiphase flow that consists of liquid and particle solids. Slurry flow characteristics are affected by particle size, particle distribution, particle concentrate, pipe geometry, flow regime, and viscosity factors. Spiral pipe is one of the solutions to increase drag reduction at a certain velocity and Reynolds number (Re). The aim of this experiment is to figure out the influence of using spiral pipe in increasing drag reduction of silica sand slurry flow. The pipeline used is spiral pipe with a helicial tape with two ratios of pitch per diameter (p/D), i.e. = 4 and 7. The test loop is set up as 3,500 mm (3.5 meters) in length. The size of the particle is 1 mm in diameter. The mean density of the silica sand particles is 2,300 kg/m3. The velocities are set between 1m/second and 5m/second. The percentage of volumetric concentration of solids in slurry (Cw) varies between 20%, 30%, and 50% in weight. Particle concentration, the Reynolds number and ratio of pitch and diameter give significant impact to the drag reduction. At a ratio of pitch/diameter (p/Di) = 7, at a Reynolds number (Re) of 30,000 and at Cw 50% can increase drag reduction to about 33%.

Keywords: Drag reduction Particle concentration Pitch ratio Silica slurry flow Spiral pipe
DOI: https://doi.ms/10.00420/ms/0218/D0IY7/RMK | Volume: 6 | Issue: 6 | Views: 0
Download Full Text (Free)
Article Document
1 / 1
100%

Subscription Required

Your subscription has expired. Please renew your subscription to continue downloading articles and access all premium features.

  • Unlimited article downloads
  • Access to premium content
  • Priority support
  • No ads or interruptions

Upload

To download this article, you can either subscribe for unlimited downloads, or upload 0 items (articles and/or projects) to download this specific article.

Total: 0 / 0
  • Choose any combination (e.g., 2 articles + 1 project = 3 total)
  • After uploading, you can download this specific article
  • Or subscribe for unlimited downloads of all articles