Search Everything

Find articles, journals, projects, researchers, and more

Back to Articles

Improving the Quality of Pyrolysis Oil from CoImproving the Quality of Pyrolysis Oil from Co-firing High-density Polyethylene Plastic Waste and Palm Empty Fruit Bunches-firing High-density Polyethylene Plastic Waste and Palm Empty Fruit Bunches

Authors:
Rengkung, Boy Nurtjahyo, Harun Al Rasyid

Abstract

This study aimed to produce and improve the quality of pyrolysis oil as a source of bioenergy that is made by mixing palm empty fruit bunch (EFB) with high-density polyethylene (HDPE) plastic waste. The slow co-pyrolysis method was employed, and HDPE waste and EFB were fed into the pyrolysis reactor at HDPE amounts of 0, 10, 25, 50, 75, and 100% by weight. The pyrolysis oil product was obtained by co-firing EFB with HDPE using the slow co-pyrolysis method in a fixed bed reactor at 500°C with a flow rate of 750 mL/min and a heating rate of 5°C/min. The chemical compositions of pyrolysis oil were analyzed by gas chromatography-mass spectroscopy. A pyrolysis oil produced by HDPE 100 wt.% was dominated by the chemical compounds of phenols, aromatics, aliphatic, and acids, while for EFB 100 wt.% was dominated with aldehydes, acids, phenols, furan and aliphatic. The addition of HDPE reduced the amount of pyrolysis oil yield, increased the pH, reduced the viscosity, and reduced the oxygen content of the pyrolysis oil. These results proved that the HDPE affected the decrease in pyrolysis oil and the increase in gas production from co-firing HDPE and EFB using the slow co-pyrolysis method.

Keywords: solid waste recycling recovery factor economic benefit
DOI: https://doi.ms/10.00420/ms/9286/J57L3/SCT | Volume: 9 | Issue: 7 | Views: 0
Download Full Text (Free)
Article Document
1 / 1
100%

Subscription Required

Your subscription has expired. Please renew your subscription to continue downloading articles and access all premium features.

  • Unlimited article downloads
  • Access to premium content
  • Priority support
  • No ads or interruptions

Upload

To download this article, you can either subscribe for unlimited downloads, or upload 0 items (articles and/or projects) to download this specific article.

Total: 0 / 0
  • Choose any combination (e.g., 2 articles + 1 project = 3 total)
  • After uploading, you can download this specific article
  • Or subscribe for unlimited downloads of all articles