Search Everything

Find articles, journals, projects, researchers, and more

Back to Articles

Gaussian Approach to Compare Crystalline Solar Panel Performance

Authors:
Eko Adhi Setiawan, Kurniawan, Aiman Setiawan

Abstract

The performance of solar panels is determined based on the Maximum Power Output and the Fill Factor (FF) under a Standard Test Condition (STC). STC is a standard test condition in which the solar panels ideally work. STC testing methods do not consider the factors that affect the performance of solar panels, such as solar radiation and temperature changes. This study discusses a method that is simple and easy to determine the performance of crystalline solar panels. This method is based on comparison of the normal cumulative probability distribution of the Fill Factor on radiation and temperature variations to STC conditions. The experiment shows that A-180 Photovoltaic (PV) has a better performance rating than B-180 PV with a probability ratio of 27.12% and 16.09, respectively. The Gaussian Method which is used also can be verified by maximum power measurement at radiation of 1000 W/m2. Results show that A-180 PV has a better power ratio with 81.55%, which is higher than B-180 PV with 78.6%.

Keywords: Fill Factor Gaussian approach; Photovoltaic Solar characteristics analyzer Solar panel performance Solar radiation Standard Test Condition Temperature
DOI: https://doi.ms/10.00420/ms/2849/P8VVQ/FAX | Volume: 6 | Issue: 2 | Views: 0
Download Full Text (Free)
Article Document
1 / 1
100%

Subscription Required

Your subscription has expired. Please renew your subscription to continue downloading articles and access all premium features.

  • Unlimited article downloads
  • Access to premium content
  • Priority support
  • No ads or interruptions

Upload

To download this article, you can either subscribe for unlimited downloads, or upload 0 items (articles and/or projects) to download this specific article.

Total: 0 / 0
  • Choose any combination (e.g., 2 articles + 1 project = 3 total)
  • After uploading, you can download this specific article
  • Or subscribe for unlimited downloads of all articles