Search Everything

Find articles, journals, projects, researchers, and more

Back to Articles

A Nonlinear Analytical Model for Symmetric Laminated Beams in Three-point Bending

Authors:
Piyawat Foytong, Maetee Boonpichetvong, Natthapong Areemit, Jaruek Teerawong

Abstract

The use of composite materials with continuous fibers in the aircraft and aerospace industries requires a thorough knowledge of behaviors of these laminate composites under various loading conditions. Indeed, the aim of this work is to simulate linear and nonlinear behavior of a symmetric laminated composite under three-point bending tests. The modelization used is based on an analytical approximation that has been recently developed for isotropic materials. This approximation is still valid for the studied quasi-isotropic laminated composite because it is symmetric with a specific layer sequence. The overall response of laminate composite is determined from the behavior of each ply outside of their orthotropic axis. Two methods are used to calculate the equivalent longitudinal Young-modulus of the laminate. The result shows that when the deflection of the specimens is less than 2.5 times the thickness, the difference between the experimental and analytical curves is about 1% for the average global stresses method, and about 7.5% for the apparent bending modulus method. For large deflections, the difference relative to the first method remains less than 11% and the second method is about 20%.

Keywords: Analytical model Graphite-epoxy composite Large deflection Linear and nonlinear behavior Three-point bending test
DOI: https://doi.ms/10.00420/ms/1937/0QWJZ/CGG | Volume: 8 | Issue: 2 | Views: 0
Download Full Text (Free)
Article Document
1 / 1
100%

Subscription Required

Your subscription has expired. Please renew your subscription to continue downloading articles and access all premium features.

  • Unlimited article downloads
  • Access to premium content
  • Priority support
  • No ads or interruptions

Upload

To download this article, you can either subscribe for unlimited downloads, or upload 0 items (articles and/or projects) to download this specific article.

Total: 0 / 0
  • Choose any combination (e.g., 2 articles + 1 project = 3 total)
  • After uploading, you can download this specific article
  • Or subscribe for unlimited downloads of all articles