Search Everything

Find articles, journals, projects, researchers, and more

Back to Articles

Kinetics of Strain Aging Behavior of API 5L X65 and API 5L B Steel Types on Long-Term Operations

Authors:
Akhmad Ardian Korda, Rizky Hidayat, Setiadi Suriana

Abstract

The kinetics of strain aging behavior of API 5L X65 and API 5L B steel types on long-term operations were studied. Pre-strain was applied to the two steel types and the process was continued with the aging process at various temperatures and over various time periods. Mechanical properties data were used to determine activation energy levels. The results showed that API 5L B steel has a lower activation energy level than API 5L X65 steel through the identification of yield strength value, which is 13.7 kJ compared to 24.87 kJ, which means that API 5L B steel is more susceptible to strain aging than API 5L X65 steel. Predictions of long-term mechanical properties which are verified through tensile testing showed that the appropriate parameters to observe and predict the strain-aging behavior are implemented by evaluating the changes in yield strength, which gives the minimum value for the average margin of error for API 5L X65 steel and API 5L B steel, i.e. 0.3% and 0.45%, respectively. On the other hand, prediction value parameters, such as elongation, toughness and the Vickers hardness have an average margin of error range between 2.6 to 5.06%.

Keywords: Kinetics Long-term operation Pipeline steels Pre-strain Strain-aging
DOI: https://doi.ms/10.00420/ms/4108/5CPGZ/LPH | Volume: 7 | Issue: 3 | Views: 0
Download Full Text (Free)
Article Document
1 / 1
100%

Subscription Required

Your subscription has expired. Please renew your subscription to continue downloading articles and access all premium features.

  • Unlimited article downloads
  • Access to premium content
  • Priority support
  • No ads or interruptions

Upload

To download this article, you can either subscribe for unlimited downloads, or upload 0 items (articles and/or projects) to download this specific article.

Total: 0 / 0
  • Choose any combination (e.g., 2 articles + 1 project = 3 total)
  • After uploading, you can download this specific article
  • Or subscribe for unlimited downloads of all articles