Search Everything

Find articles, journals, projects, researchers, and more

Back to Articles

Response Surface Optimisation of Biogas Potential in Co-Digestion of Miscanthus Fuscus and Cow Dung

Authors:
Jianfeng Gan, Zhixian Chen, Xuan Feng, Zhi Wei, Sai Zhang, Yan Du, Congjian Xu, Hongbo Zhao

Abstract

In this study, the effects of co-digestion operating conditions for the enhancement of biogas production from Miscanthus Fuscus mixed with cow dung, was investigated. The aforementioned organic wastes are good substrate resources for anaerobic co-digestion (AD) due to their high content of easily biodegradable materials. This source of   effective and eco-friendly technology as AD is for generating energy from organic waste. Response surface methodology (RSM) based on the Box-Behnken (BBD) design was employed to evaluate and optimise four process variables: pH, temperature, and hydraulic retention time (HRT) and feedstock inoculum (F/I) ratio on the biogas production. This study signifies the interactions between the process conditions, and identifies the most significant variables of control in order to maximise the biogas production. A developed regression model established the relationship between the significant effect of the input variables and the response. The analysis of variance (ANOVA) showed a high coefficient of determination value (R2= 0.9997) at 95% confidence level. The results show that the F/I ratio has a major impact on biogas production. The model developed predicted values which were well fitted (P<0.005) with the values obtained from the experimental data. Thus, the regression model confirmed findings. The RSM and BBD employed proved to be economical and a reliable tool for modelling, optimizing and studying the interactive effects of the four process factors (pH, temperature, HRT and F/I ratio) for the biogas production.

Keywords: solid waste recycling recovery factor economic benefit
DOI: https://doi.ms/10.00420/ms/7038/QUHDO/HTA | Volume: 9 | Issue: 5 | Views: 0
Download Full Text (Free)
Article Document
1 / 1
100%

Subscription Required

Your subscription has expired. Please renew your subscription to continue downloading articles and access all premium features.

  • Unlimited article downloads
  • Access to premium content
  • Priority support
  • No ads or interruptions

Upload

To download this article, you can either subscribe for unlimited downloads, or upload 0 items (articles and/or projects) to download this specific article.

Total: 0 / 0
  • Choose any combination (e.g., 2 articles + 1 project = 3 total)
  • After uploading, you can download this specific article
  • Or subscribe for unlimited downloads of all articles