Search Everything

Find articles, journals, projects, researchers, and more

Back to Articles

Kinetic Model Development for Biogas Production from Lignocellulosic Biomass

Authors:
Manjula Das Ghatak, Pinakeswar Mahanta

Abstract

Lignocellulosic biomass has great potential for biogas production, but there are various factors which affect the performance of lignocellulosic biomass. Among the various factors, temperature is one of the important factors which play a significant role in biogas production from lignocellulosic biomass. Biogas production was studied for bamboo dust, sawdust, sugarcane bagasse and rice straw, all separately mixed with cattle dung. The effect of temperature on biogas production from various lignocellulosic biomasses was studied for temperature range from 35°C to 55°C at steps of 5°C. The objective of this work is to develop a mathematical model for evaluating the effect of temperature on the rate of biogas production from various lignocellulosic biomasses. The new mathematical model is derived by modification of the modified Gompertz model. The new model is found to be suitable for lignocellulosic biomass mixed with cattle dung in the temperature range 35°C to 55°C. The resulting estimated biogas production is found to be highly correlated to the experimental data of present study.

Keywords: Biogas Kinetic study Lignocellulosic biomass Mathematical model Temperature effect
DOI: https://doi.ms/10.00420/ms/9003/NRYUV/AOM | Volume: 8 | Issue: 4 | Views: 0
Download Full Text (Free)
Article Document
1 / 1
100%

Subscription Required

Your subscription has expired. Please renew your subscription to continue downloading articles and access all premium features.

  • Unlimited article downloads
  • Access to premium content
  • Priority support
  • No ads or interruptions

Upload

To download this article, you can either subscribe for unlimited downloads, or upload 0 items (articles and/or projects) to download this specific article.

Total: 0 / 0
  • Choose any combination (e.g., 2 articles + 1 project = 3 total)
  • After uploading, you can download this specific article
  • Or subscribe for unlimited downloads of all articles