Search Everything

Find articles, journals, projects, researchers, and more

Back to Articles

Effects of Absorbent Flow Rate on CO2 Absorption through a Super Hydrophobic Hollow Fiber Membrane Contactor

Authors:
Sutrasno Kartohardjono, Angeline Paramitha, Aulia Andika Putri, Ryan Andriant

Abstract

The aim of this study is to evaluate the effects of absorbent flow rate on CO2 absorption through a super hydrophobic hollow fiber contactor. The absorbent used in this study was a physical absorbent, namely a polyethyleneglycol-300 (PEG-300) solution. Meanwhile, the feed gases used in the experiments were pure CO2 and a mixture of 30% CO2 and 70% CH4. Gas absorption using a physical absorbent provides various benefits; for example, it can produce sufficiently high selectivity towards CO2 and it is less corrosive than chemical solvents. Three super hydrophobic hollow fiber contactors, each 6 cm in diameter and 25 cm in lengthconsist of 1000, 3000 and 5000 fibers, respectively, were used in this study. The type ofsuper hydrophobic fiber membrane used was polypropylene-based, with an outer and inner diameter of about 525 and 235 µm, respectively. During the experiments, the absorbent was flowed through the lumen fibers, whilst the feed gas flowed through the shell side of the membrane contactors. The experimental results showed that the mass transfer coefficient, the flux, and the absorption efficiency increased, but the CO2 loading decreased, with increasing absorbent flow rate in the membrane contactor. Meanwhile, it was found that an increase in the number of fibers in the membrane contactor, in general, will increase the absorption efficiency and the CO2 loading, but will decrease the overall mass transfer coefficient and the flux.

Keywords: Absorption efficiency Flux Mass transfer coefficient Physical absorbent Polyethyleneglycol-300.
DOI: https://doi.ms/10.00420/ms/2005/WKLQ3/ASY | Volume: 8 | Issue: 8 | Views: 0
Download Full Text (Free)
Article Document
1 / 1
100%

Subscription Required

Your subscription has expired. Please renew your subscription to continue downloading articles and access all premium features.

  • Unlimited article downloads
  • Access to premium content
  • Priority support
  • No ads or interruptions

Upload

To download this article, you can either subscribe for unlimited downloads, or upload 0 items (articles and/or projects) to download this specific article.

Total: 0 / 0
  • Choose any combination (e.g., 2 articles + 1 project = 3 total)
  • After uploading, you can download this specific article
  • Or subscribe for unlimited downloads of all articles