Search Everything

Find articles, journals, projects, researchers, and more

Back to Articles

Exploiting Geometrical Node Location for Improving Spatial Reuse in SINR-based STDMA Multi-hop Link Scheduling Algorithm

Authors:
Nachwan Adriansyah, Muhamad Asvial, Bagio Budiarjo

Abstract

This paper proposes a novel approximation for a Spatial Time Division Multiple Access (STDMA) link-scheduling algorithm based on geometrical node exploitation to improve spatial reuse performance. The geometrical location of nodes was exploited in order to reduce computational complexity and to achieve higher accuracy in transmission to satisfy the Signal to Interference and Noise Ratio (SINR) requirement. The process of SINR global checking is a main constraint in the SINR based interference model but is reduced through geometrical partition and interference approximations based on geometrical node locations. Simulation results show that the proposed algorithm increases the spatial reuse performance in comparison to the greedy physical interference model in similar scenarios. The model utilizing geometrical partition exhibits lower complexity compared to the pure physical interference model that includes SINR global checking.

Keywords: Approximation algorithm; Geometrical node location exploitation; Link scheduling; Mesh network; STDMA
DOI: https://doi.ms/10.00420/ms/6957/1KWN4/WXV | Volume: 6 | Issue: 1 | Views: 0
Download Full Text (Free)
Article Document
1 / 1
100%

Subscription Required

Your subscription has expired. Please renew your subscription to continue downloading articles and access all premium features.

  • Unlimited article downloads
  • Access to premium content
  • Priority support
  • No ads or interruptions

Upload

To download this article, you can either subscribe for unlimited downloads, or upload 0 items (articles and/or projects) to download this specific article.

Total: 0 / 0
  • Choose any combination (e.g., 2 articles + 1 project = 3 total)
  • After uploading, you can download this specific article
  • Or subscribe for unlimited downloads of all articles