Search Everything

Find articles, journals, projects, researchers, and more

Back to Articles

Mathematical Model Controlled Potassium Chloride Release Systems from Chitosan Microspheres

Authors:
Yuswan Muharam, Widodo Wahyu Purwanto, Kamarza Mulia, Praswasti PDK Wulan, Ismail Marzuki, Mubarokah N. Dewi

Abstract

Chitosan can be prepared in the form of microspheres that serve as a depot for bioactive compounds released in a controlled way to diseased organs. In this study, a mathematical model of potassium chloride release from chitosan microspheres was developed. The model was validated using experimental data. The potassium chloride-loading percentages of 10.01%, 20.84%, and 20.57% were prepared using a cross-linking method. The potassium chloride loading was kept constant at about 20% when the potassium chloride mass in the preparation stage was above 5.024 mg/mL. Experiments and a model calculation of potassium chloride release from the microspheres with a loading of 10.01% and 20.57% were performed. In general, the model reproduces the experimental data. The experiments and the calculation show that during the same period, microspheres containing more potassium chloride release a higher percentage of potassium chloride than do microspheres containing less potassium chloride.

Keywords: Chitosan Microspheres Moldeling controlled drug release system Simulation
DOI: https://doi.ms/10.00420/ms/1906/TG1S6/NYH | Volume: 6 | Issue: 7 | Views: 0
Download Full Text (Free)
Article Document
1 / 1
100%

Subscription Required

Your subscription has expired. Please renew your subscription to continue downloading articles and access all premium features.

  • Unlimited article downloads
  • Access to premium content
  • Priority support
  • No ads or interruptions

Upload

To download this article, you can either subscribe for unlimited downloads, or upload 0 items (articles and/or projects) to download this specific article.

Total: 0 / 0
  • Choose any combination (e.g., 2 articles + 1 project = 3 total)
  • After uploading, you can download this specific article
  • Or subscribe for unlimited downloads of all articles