Search Everything

Find articles, journals, projects, researchers, and more

Back to Articles

Detection of “Cocoa Swollen Shoot Disease” in Ghanaian Cocoa Trees Based on Convolutional Neural Network (CNN) and Deep Learning Technique

Authors:
Atianashie Miracle A

Abstract

The application of Convolutional Neural Networks and Deep Learning Techniques in the detection of "Cocoa Swollen Shoot" disease in Ghanaian cocoa trees have demonstrated its effectiveness and reliability. This approach provides a valuable tool for cocoa farmers and agricultural authorities to promptly identify and manage the disease, contributing to the sustainable production of cocoa and the preservation of Ghana's cocoa industry. Recent advances in diagnostics have made image analysis one of the main areas of research and development. Selecting and calculating these characteristics of a disease is a difficult task. Among deep learning techniques, deep convolutional neural networks are actively used for image analysis. This includes areas of application such as segmentation, anomaly detection, disease classification, and computer-aided diagnosis. The objective, which we aim for in this article, is to extract information in an effective way for a better diagnosis of the plants attending the disease of “swollen shoot”.

Keywords: Drone Convolutional Neural Networks Image Recognition Feature Detection Deep learning
DOI: https://doi.ms/10.00420/ms/4697/4WFKQ/PQS | Volume: 11 | Issue: 3 | Views: 0
Download Full Text (Free)
Article Document
1 / 1
100%

Subscription Required

Your subscription has expired. Please renew your subscription to continue downloading articles and access all premium features.

  • Unlimited article downloads
  • Access to premium content
  • Priority support
  • No ads or interruptions

Upload

To download this article, you can either subscribe for unlimited downloads, or upload 0 items (articles and/or projects) to download this specific article.

Total: 0 / 0
  • Choose any combination (e.g., 2 articles + 1 project = 3 total)
  • After uploading, you can download this specific article
  • Or subscribe for unlimited downloads of all articles