Search Everything

Find articles, journals, projects, researchers, and more

Back to Articles

The Effect of Calcium Carbonate (CaCO3) Nanoparticles on the Flow through a Pentagon Spiral Pipe

Authors:
Prof. Dr. Ir. Yanuar, M.Eng., M.Sc., Marcus Alberth Talahatu, Sealtial Mau, Kurniawan Teguh Waskito, Winda Wulandari

Abstract

CaCO3 is friendly to both the environment and humans. For this reason, it is suitable to be applied in fluid transportation to enable more efficient flow. The objective of this study was to investigate the effect of CaCO3 on the flow in a pentagon spiral pipe. The working fluid was circulated into the test pipe with constant pressure by the compressor. The working fluid was produced by mixing pure water with CaCO3 nanoparticles, which have average diameter of 100 nm, in the concentration ratios of 100 ppm, 300 ppm and 500 ppm. The test pipe was a pentagon spiral pipe with the ratio P/Do 7.1, and a circular pipe with a 4 mm inner diameter was used for comparison. The highest drag reduction (DR) that occurred in the spiral pipe was 35% around Re' 4×104 with nanofluids concentration of 500 ppm, while the highest DR in the circular pipe was of 26% around Re’ 4×104. The results show that increasing the percentage of solid particles affects the properties of the working fluid, such as viscosity, density, pressure drop and DR. The effects of the change in fluid properties were also taken into account. These affect the damping phenomena in the near wall region, which gives friction factor reduction. Another benefit of the spiral pipe is that it prevents the sedimentation of nanoparticles.

Keywords: Calcium carbonate Drag reduction Nanofluid Pentagon spiral pipe Pressure drop
DOI: https://doi.ms/10.00420/ms/0453/90OSB/SLM | Volume: 8 | Issue: 7 | Views: 0
Download Full Text (Free)
Article Document
1 / 1
100%

Subscription Required

Your subscription has expired. Please renew your subscription to continue downloading articles and access all premium features.

  • Unlimited article downloads
  • Access to premium content
  • Priority support
  • No ads or interruptions

Upload

To download this article, you can either subscribe for unlimited downloads, or upload 0 items (articles and/or projects) to download this specific article.

Total: 0 / 0
  • Choose any combination (e.g., 2 articles + 1 project = 3 total)
  • After uploading, you can download this specific article
  • Or subscribe for unlimited downloads of all articles