Search Everything

Find articles, journals, projects, researchers, and more

Back to Articles

Design of CMOS RFIC UWB Carrier-Less and Carrier-Based Transmitters

Authors:
Meng Miao, Rui Xu, Yalin Jin, Cam Nguyen

Abstract

This paper presents new carrier-based and carrier-less ultra-wideband (UWB) transmitter architectures and their CMOS implementation. The carrier-based transmitter designed using a 0.18-?m CMOS process adopts a double-stage switching to enhance RF-power efficiency, reduce dc-power consumption and circuit complexity, and increase switching speed and isolation. Measurement results show that the generated UWB signal can vary from 2 V peak-to-peak with 3-dB 4-ns pulse width to 1 V with 0.5 ns, covering 10-dB signal bandwidths from 0.5 to 4 GHz, respectively. The generated UWB signal can be tuned to cover the entire UWB frequency range of 3.1 to 10.6 GHz. The carrier-less transmitter integrates tuning delay circuit, square-wave generator, impulse-forming circuit, and pulse-shaping circuit in a single chip using a standard low-cost 0.25-?m CMOS process. It can generate monocycle pulse and Gaussian-type impulse (without the pulse-shaping circuitry) signals with tunable pulse duration. Measured results show that the carrier-less transmitter can produce 0.3–0.6 V peak-to-peak monocycle pulse with 140–350 ps tunable pulse-duration and 0.5–1.3 V peak-to-peak impulse signal with 100–300 ps tunable pulse-duration.

Keywords: CMOS RFIC transmitter UWB transmitter UWB system UWB communications and radar
DOI: https://doi.ms/10.00420/ms/1677/SUM41/HVS | Volume: 2 | Issue: 2 | Views: 0
Download Full Text (Free)
Article Document
1 / 1
100%

Subscription Required

Your subscription has expired. Please renew your subscription to continue downloading articles and access all premium features.

  • Unlimited article downloads
  • Access to premium content
  • Priority support
  • No ads or interruptions

Upload

To download this article, you can either subscribe for unlimited downloads, or upload 0 items (articles and/or projects) to download this specific article.

Total: 0 / 0
  • Choose any combination (e.g., 2 articles + 1 project = 3 total)
  • After uploading, you can download this specific article
  • Or subscribe for unlimited downloads of all articles